\qquad
Problem \#1: The Venn diagram below represents the number of Secondary 5 students at D'Arcy McGee High School who play basketball, hockey or soccer.

1) Fill in the dots. The dots represent the total number of students (\# $\boldsymbol{\Omega}$) and the number of students in each sport circle.
$(\# \Omega)=$
\# B =
\# $\mathrm{S}=$
\# H =
2) Answer the following questions [a) to z)]. How many students:
a) play basketball? \qquad n) do not play basketball? \qquad
o) do not play soccer? \qquad
p) do not play hockey?
q) do not play any of these sports? \qquad
r) play basketball but not soccer? \qquad
s) play soccer but not basketball? \qquad
t) play basketball but not hockey? \qquad
u) play hockey but not basketball? \qquad
v) play soccer but not hockey?
w) play hockey but not soccer?
x) play exactly one of these sports? \qquad
y) play at least one sport? \qquad
z) play exactly two sports? \qquad

Problem \#1: A game consists of flipping a coin followed by a roll of a fair 6-sided die and then the same coin is flipped the second time.
a) Draw a tree diagram of this game including all the possible outcomes along with their respective probabilities. Verify that all the probabilities add up to 1 or 100%
b) The following two events are defined as follow:

A: "Obtaining identical results on both coin tosses and getting an even number"
B: "Getting Tails on both coin tosses"
Question: Use a Venn diagram to represent this situation using both events A and B and the Universal set Ω.
c) Calculate the following probabilities.

1. $P(A \cap B)$
2. $P(A \cup B) \rightarrow$ Use the formula $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ and verify your result by using the Venn diagram
3. Probability of obtaining Heads on both coin tosses
